Some infinite-dimensional simple Lie algebras in characteristic 0 related to those of Block

Dragomir Ž. Đoković ${ }^{\mathrm{a}, *}$, Kaiming Zhao ${ }^{\mathrm{b}, 1}$
${ }^{\text {a }}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ont., Canada N2L 3 G1
${ }^{\mathrm{b}}$ Institute of Systems Science, Academia Sinica, Reijing, 100080, People's Republic of China

Communicated by C.A. Weibel; received 26 March 1996

Abstract

Given a nontrivial torsion-free abelian group $(A,+, 0)$, a field F of characteristic 0 , and a nondegenerate bi-additive skew-symmetric map $\varphi: A \times A \rightarrow F$, we study the Lie algebra $\mathscr{L}(A, \varphi)$ over F with basis $\left\{e_{x}: x \in A \backslash\{0\}\right\}$ and multiplication $\left[e_{x}, e_{y}\right]=\varphi(x, y) e_{x+y}$. We show that $\mathscr{L}(A, \varphi)$ is simple, determine its derivations, and show that the locally finite derivations D have the form $D\left(e_{x}\right)=\mu(x) e_{x}, \mu \in \operatorname{Hom}(A, F)$. We describe all isomorphisms between two such algebras. Finally, we compute $H^{2}(\mathscr{L}, F)$. (C) 1998 Elsevier Science B.V. All rights reserved.

AMS Classification: Primary 17B40; 17B65; secondary 17B56; 17B68

1. Introduction

Let F be a field of characteristic 0 and A an abelian group. Let L be the vector space over F with basis consisting of all symbols $e_{x}, x \in A$. Define a bilinear multiplication in L by

$$
\left(e_{x}, e_{y}\right) \rightarrow\left[e_{x}, e_{y}\right]:=f(x, y) e_{x+y}
$$

where $x, y \in A$ are arbitrary and

$$
f(x, y)=\varphi(x, y)+\alpha(x-y)
$$

[^0]for some skew-symmetric bi-additive function $\varphi: A \times A \rightarrow F$ and some additive function $\alpha: A \rightarrow F$. We denote the vector space L with this algebra structure by $L(A, \varphi, \alpha)$.

When $\varphi \neq 0$ and $\alpha \neq 0$, this algebra was studied by Block [2] and in our previous paper [4]. In that case L is a Lie algebra if and only if $\varphi=\alpha \wedge \beta$ for some additive function $\beta: A \rightarrow F$, i.e.,

$$
\varphi(x, y)=\alpha(x) \beta(y)-\alpha(y) \beta(x)
$$

Assume that $\operatorname{ker}(\alpha) \cap \operatorname{ker}(\beta)=0$ and $A \neq 0$. In that case the Lie algebra $L=$ $L(A, \rho, \alpha)$ is close to being simple. More precisely, the derived algehra $I^{2}=[I, L]$ is either equal to L or has codimension 1 in L, the center Z of L is either 0 or has dimension $1, Z \subset L^{2}$, and the quotient algebra $\mathscr{L}(A, \varphi, \alpha):=L^{2} / Z$ is simple. The algebras $\mathscr{L}(A, \varphi, \alpha)$ are called generalized Block algebras. In [4] we have determined the derivation algebra of $\mathscr{L}(A, \varphi, \alpha)$, described its automorphism group and computed its second cohomology group with coefficients in F.

In the special case when $\varphi=\alpha \wedge \beta$ and $\beta(A)=\mathbf{Z}$ one can define a proper simple subalgebra of $\mathscr{L}(A, \varphi, \alpha)$. These subalgebras were studied in detail in our paper [5].

If $\varphi=0$ and $\alpha \neq 0$, then L is automatically a Lie algebra. In fact it is a special case of so called generalized Witt algebras. In this case L is simple if and only if α is injective. For the properties of generalized Witt algebras (in characteristic 0), we refer the reader to our paper [6].

In the present paper we study the remaining case where $\varphi \neq 0$ and $\alpha=0$. Again $L(A, \varphi, 0)$ is a Lie algebra, and we simplify the notation by writing just $L(A, \varphi)$ instead of $L(A, \varphi, 0)$. Hence, we have

$$
\begin{equation*}
\left[e_{x}, e_{y}\right]=\varphi(x, y) e_{x+y} \tag{1.1}
\end{equation*}
$$

for all $x, y \in A$.
Let K_{φ} be the kernel of φ, i.e., K_{φ} is the subgroup of A consisting of all $x \in A$ such that $\varphi(x, y)=0$ for all $y \in A$. The subspace $Z \subset L$ spanned by all e_{x} with $x \in K_{\varphi}$ is the center of $L=L(A, \varphi)$. Let $\bar{A}=A / K_{\varphi}$ and let $\bar{\varphi}: \bar{A} \times \bar{A} \rightarrow F$ be the (skew-symmetric) bilinear map induced by φ. It is easy to check that

$$
L(A, \varphi) / Z \simeq L(\bar{A}, \bar{\varphi}) / F e_{\overline{0}}
$$

where $\overline{0}=0+Z \in \bar{A}$ and $F e_{\overline{0}}$ is the center of $L(\bar{A}, \bar{\varphi})$. Since we are interested only in studying the quotient algebra $L(A, \varphi) / Z$, the above isomorphism shows that, without any loss of generality, it suffices to consider the case where $K_{\varphi}=0$.

Hence, we assume from now on that φ is non-degenerate (i.e., $K_{\varphi}=0$). Since F has characteristic 0 , this assumption implies that A is torsion-free. To avoid the trivial case, we assume also that $A \neq 0$. The condition $K_{\varphi} \neq 0$ implies that the rank of A is at least 2 .

The one-dimensional subspace $F e_{0}$ is the center of $L(A, \varphi)$. The subspace

$$
\mathscr{L}(A, \varphi)=\sum_{x \in A \backslash\{0\}} F e_{x}
$$

is an ideal of $L(A, \varphi)$ and we have

$$
L(A, \varphi)=F e_{0} \oplus \mathscr{L}(A, \varphi)
$$

In Section 2 we show that the Lie algebra $\mathscr{L}(A, \varphi)$ is simple. In particular, it follows that $\mathscr{L}(A, \varphi)$ is the derived algebra of $L(A, \varphi)$. We mention that the finite-dimensional version of the simple Lie algebra $\mathscr{L}(A, \varphi)$, but now over a field of prime characteristic, has been introduced long ago by Albert and Frank in their paper [1]. The algebras $L\left(\mathbf{Z}^{n}, \varphi\right)$ in characteristic 0 were studied by Koepp in his Ph.D. thesis [7]. He showed that $\mathscr{L}\left(\mathbf{Z}^{n}, \varphi\right)$ is simple under an additional condition on φ. It follows from our simplicity theorem (Theorem 2.1) that the additional condition used by Koepp is not needed.

Note that $\mathscr{L}(A, \varphi)$ and $L(A, \varphi)$ are A-graded Lie algebras: the homogeneous component of $L(A, \varphi)$ of degree x is $F e_{x}$. In Section 3 we describe the derivations of $\mathscr{L}(A, \varphi)$. In particular, we show that the derivations of degree $x \neq 0$ are inner, and that the derivations of degree 0 have the form $e_{x} \mapsto \mu(x) e_{x}$ where $\mu \in \operatorname{Hom}(A, F)$. The main result of that section is that the locally finite derivations of $\mathscr{L}(A, \varphi), \operatorname{rank}(A)<\infty$, are precisely the derivations of degree 0 .

In Section 4 we describe all isomorphisms between two simple algebras $\mathscr{L}(A, \varphi)$ and $\mathscr{L}(B, \psi)$ when A and B have finite ranks. As a consequence we obtain a description of the automorphism group of $\mathscr{L}(A, \varphi)$ when A has finite rank.

Finally in Section 5 we compute the second cohomology group $H^{2}(\mathscr{L}, F)$ for the simple Lie algebra $\mathscr{L}=\mathscr{L}(A, \varphi)$.

More general Lie algebras (in characteristic 0) than the algebras studied in the present paper and [4] can be constructed by analogy with Block algebras in characteristic p described in [3].

2. Simplicity of $\mathscr{L}(A, \varphi)$

As mentioned before, we assume that A is a nonzero torsion-free abelian group and $\varphi: A \times A \rightarrow F$ is a nondegenerate skew-symmetric bi-additive map.

Theorem 2.1. The Lie algebra $\mathscr{L}(A, \varphi)$ is simple.
Proof. Let I be a nonzero ideal of $\mathscr{L}=\mathscr{L}(A, \varphi)$. Let

$$
u=a_{1} e_{x_{1}}+\cdots+a_{n} e_{x_{n}}
$$

be a nonzero element of I, where $x_{1}, \ldots, x_{n} \neq 0$ and $a_{1}, \ldots, a_{n} \in F$, and assume that u is chosen so that n is minimal. It follows that the x_{i} 's are distinct and the a_{i} 's are all nonzero.

Assume that $n>1$. Let $y \in A$ be arbitrary and let $v=\left[u, e_{y}\right]$. Thus,

$$
\begin{equation*}
v=\varphi\left(x_{1}, y\right) e_{x_{1}+y}+\cdots+\varphi\left(x_{n}, y\right) e_{x_{n}+y} \in I . \tag{2.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\varphi\left(x_{1}-x_{2}, y\right)=0 \tag{2.2}
\end{equation*}
$$

If $\varphi\left(x_{1}, y\right)=0$, then (2.1) and the minimality of n imply that also $\varphi\left(x_{2}, y\right)=0$, and so (2.2) holds. In particular, by taking $y=x_{1}$, we conclude that $\varphi\left(x_{1}, x_{2}\right)=0$.

If $\varphi\left(x_{1}, y\right) \neq 0$, then $v \neq 0$ and the minimality of n implies that $\varphi\left(x_{i}, y\right) \neq 0$ for all i 's. By replacing u with v, we conclude that $\varphi\left(x_{1}+y, x_{2}+y\right)=0$. Since also $\varphi\left(x_{1}, x_{2}\right)=0$ and φ is skew-symmetric and bi-additive, we conclude that (2.2) holds.

Since φ is nondegenerate and (2.2) holds for all $y \in A$, we conclude that $x_{1}=x_{2}$, a contradiction. Hence $n=1$, i.e., $e_{x_{1}} \in I$.

We claim that $e_{y} \in I$ for all $y \neq 0$. If $\varphi\left(y, x_{1}\right) \neq 0$, then $y-x_{1} \neq 0$ and the claim follows from

$$
\left[e_{y-x_{1}}, e_{x_{1}}\right]=\varphi\left(y, x_{1}\right) e_{y} \in I
$$

Assume now that $\varphi\left(y, x_{1}\right)=0, y \neq 0, x_{1}$. Choose $z \in A$ such that $\varphi\left(z, x_{1}\right) \neq 0$ and $\varphi(y, z) \neq 0$. Since $\varphi\left(z, x_{1}\right) \neq 0$, we infer that $e_{z} \in I$. As $y \neq z$ and $\left[e_{y-z}, e_{z}\right]=$ $\varphi(y, z) e_{y} \in I$, we conclude again that $e_{y} \in I$. Thus our claim is proved.

So, we have $I=\mathscr{L}$, and \mathscr{L} is simple.
In the case $A=\mathbf{Z}^{n}, n \geq 2$, the above theorem was proved by Koepp in his thesis [7], under the additional hypothesis:
(H) If $x_{1}, \ldots, x_{k} \in A$ are independent and $1 \leq k<n$, then there exists $y \in A$ such that x_{1}, \ldots, x_{k}, y are also independent and $\varphi\left(x_{i}, y\right) \neq 0$ for some $i \in\{1, \ldots, k\}$.

Sincc φ is assumed to be nondegenerate, the hypothesis (H) is automatically satisfied. Indeed, let $x_{1}, \ldots, x_{k} \in A$ be independent and $1 \leq k<n$. Assume that $\varphi\left(x_{i}, y\right)=0$ for all $i=1, \ldots, k$ whenever y is chosen so that x_{1}, \ldots, x_{k}, y are independent. Now assume that x_{1}, \ldots, x_{k}, y are dependent and choose $z \in A$, such that x_{1}, \ldots, x_{k}, z are independent. Then $\varphi\left(x_{i}, z\right)=0$ and $\varphi\left(x_{i}, y+z\right)=0$ for all i. We conclude that $\varphi\left(x_{i}, y\right)=0$ for all $i=1, \ldots, k$ and all $y \in A$. This means that $x_{1}, \ldots, x_{k} \in K_{\varphi}$, which contradicts the nondegeneracy of φ.

We conclude this section with an example of a simple Lie algebra $\mathscr{L}\left(\mathbf{Z}^{3}, \varphi\right)$.
Example 1. Let $A=\mathbf{Z}^{n}, n \geq 2$. A bi-additive skew-symmetric map $\varphi: A \times A \rightarrow F$ is given by a skew-symmetric n by n matrix over F, say the matrix M. Then φ is nondegenerate (in our sense) if and only if

$$
M v=0 \Rightarrow v=0
$$

for all $v \in \mathbf{Z}^{n}$. Hence, φ can be nondegenerate even if $\operatorname{det}(M)=0$.
For instance, if $n=3$ and

$$
M=\left(\begin{array}{rrr}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)
$$

with $a, b, c \in F$ linearly independent over \mathbf{Q}, then φ is nondegenerate. In that case the Lie algebra

$$
\mathscr{L}(a, b, c):=\mathscr{L}\left(\mathbf{Z}^{3}, \varphi\right)
$$

is simple.

3. Derivations of $\mathscr{L}(A, \varphi)$

Let D be a derivation of $\mathscr{L}=\mathscr{L}(A, \varphi)$. We extend D to a derivation of $L=L(A, \varphi)$, and denote the extension again by D, by setting $D\left(e_{0}\right)=0$. For arbitrary $y \in A$ we have

$$
\begin{equation*}
D\left(e_{y}\right)=\sum_{x \in A} c(x, y) e_{x+y} \tag{3.1}
\end{equation*}
$$

for some scalars $c(x, y) \in F$. The scalars $c(x, y)$ satisfy the following condition:
(F) for each $y \in A$ there are only finitely many $x \in A$ such that $c(x, y) \neq 0$.

For each $x \in A$ we define the linear map $D_{x}: L \rightarrow L$ by

$$
\begin{equation*}
D_{x}\left(e_{y}\right)=c(x, y) e_{x+y}, \quad y \in A \tag{3.2}
\end{equation*}
$$

It is easy to verify that each D_{x} is a derivation of L. Furthermore,

$$
\begin{equation*}
D=\sum_{x \in A} D_{x} \tag{3.3}
\end{equation*}
$$

in the sense that for each $y \in A$ only finitely many terms $D_{x}\left(e_{y}\right)$ are nonzero and

$$
D\left(e_{y}\right)=\sum_{x \in A} D_{x}\left(e_{y}\right)
$$

Since $D\left(e_{0}\right)=0$, we have

$$
\begin{equation*}
c(x, 0)=0, \quad \forall x \in A \tag{3.4}
\end{equation*}
$$

Since $D(\mathscr{L}) \subset \mathscr{L}$, we also have

$$
\begin{equation*}
c(x,-x)=0, \quad \forall x \in A \tag{3.5}
\end{equation*}
$$

Lemma 3.1. If $x \neq 0$, then D_{x} is an inner derivation, i.e., $D_{x}=\lambda \operatorname{ad}\left(e_{x}\right)$ for some $\lambda \in F$.

Proof. As x is fixed, we shall write c_{y} instead of $c(x, y)$. By applying D_{x} to $\left[e_{y}, e_{z}\right]=$ $\varphi(y, z) e_{y+z}$, we obtain

$$
\begin{equation*}
c_{y+z} \varphi(y, z)=c_{y} \varphi(x+y, z)+c_{z} \varphi(y, x+z) \tag{3.6}
\end{equation*}
$$

By replacing z with $k y, k \in \mathbf{Z}$, we obtain

$$
\varphi(x, y) \cdot\left[c_{k y}-k c_{y}\right]=0
$$

Hence, if $\varphi(x, y) \neq 0$, then

$$
\begin{equation*}
c_{k y}=k c_{y}, \quad k \in \mathbf{Z} \tag{3.7}
\end{equation*}
$$

We now choose $y, z \in A$ such that $\varphi(x, y), \varphi(x, z)$, and $\varphi(x, y+z)$ are all nonzero. By replacing y with $k y$ and z with $k z$ in (3.6), we obtain that

$$
\begin{equation*}
k^{3} \varphi(y, z) \cdot\left[c_{y+z}-c_{y}-c_{z}\right]=k^{2}\left[\varphi(x, z) c_{y}-\varphi(x, y) c_{z}\right] \tag{3.8}
\end{equation*}
$$

holds for all integers k. We deduce that

$$
\begin{equation*}
\frac{c_{y}}{\varphi(x, y)}=\frac{c_{z}}{\varphi(x, z)} \tag{3.9}
\end{equation*}
$$

holds. We claim that (3.9) remains valid when we remove the restriction $\varphi(x, y+$ $z) \neq 0$.

Thus assume that $\varphi(x, y+z)=0$. We can choose $u \in A$ such that the numbers $\varphi(x, u), \varphi(x, y+u)$, and $\varphi(x, z+u)$ are nonzero. Consequently, we have

$$
\frac{c_{y}}{\varphi(x, y)}=\frac{c_{u}}{\varphi(x, u)}=\frac{c_{z}}{\varphi(x, z)}
$$

and so (3.9) holds.
Let λ be the common value of all numbers $c_{y} \varphi(x, y)^{-1}$ with $\varphi(x, y) \neq 0$. Let $D^{\prime}=$ $D_{x}-\lambda \operatorname{ad}\left(e_{x}\right)$. For $y \in A$ such that $\varphi(x, y) \neq 0$ we have

$$
D^{\prime}\left(e_{y}\right)=D_{x}\left(e_{y}\right)-\lambda\left[e_{x}, e_{y}\right]=\left[c_{y}-\lambda \varphi(x, y)\right] e_{x+y}=0
$$

The elements e_{y} such that $\varphi(x, y) \neq 0$ generate \mathscr{L} as a Lie algebra, and so $D^{\prime}=0$, i.e., $D_{x}=\lambda \operatorname{ad}\left(e_{x}\right)$.

In the next lemma we determine the derivation D_{0}. By (3.2) we have

$$
D_{0}\left(e_{x}\right)=\mu(x) e_{x}, \quad x \in A
$$

where $\mu(x)=c(0, x)$.

Lemma 3.2. The map $\mu: A \rightarrow F$ is additive.
Proof. We have to show that

$$
\begin{equation*}
\mu(x+y)=\mu(x)+\mu(y) \tag{3.10}
\end{equation*}
$$

holds for all $x, y \in A$. If $\varphi(x, y) \neq 0$, this follows by applying D_{0} to (1.1). Since $\mu(0)=c(0,0)=0$ by (3.4), it follows that (3.10) also holds if $x=0$ or $y=0$.

Now let $y=-x \neq 0$. Choose $z \in A$ such that $\varphi(x, z) \neq 0$. Then we have

$$
\mu(z)=\mu(z-x)+\mu(x)=\mu(z)+\mu(-x)+\mu(x) .
$$

Hence, $\mu(x)+\mu(-x)=0$, i.e., (3.10) holds also when $x+y=0$.

Finally, let $x, y, x+y \neq 0$ and $\varphi(x, y)=0$. We choose $z \in A$ such that $\varphi(x, z), \varphi(y, z)$, and $\varphi(x+y, z)$ are all nonzero. It follows that also $\ddot{\varphi}(x+z, y-z) \neq 0$. Hence, we can apply (3.10) to each of the pairs $(x+z, y-z),(x, z)$, and $(y,-z)$. So, we obtain that

$$
\mu(x+y)=\mu(x+z)+\mu(y-z)=\mu(x)+\mu(y)+\mu(z)+\mu(-z) .
$$

Since $\mu(z)+\mu(-z)=0,(3.10)$ is proved.

Let $\eta: A \rightarrow \operatorname{Hom}(A, F)$ be the map such that $\eta(x)(y)=\varphi(x, y)$ for all $x, y \in A$. Since φ is non-degenerate, the homomorphism η is injective. We denote by $\langle\eta(A)\rangle$ the F-subspace of $\operatorname{Hom}(A, F)$ spanned by the subgroup $\eta(A)$.

Lemma 3.3. If $\operatorname{dim}_{F}\langle\eta(A)\rangle=n<\infty$, then $D^{\prime}:=D-D_{0}$ is an inner derivation.

Proof. By (3.3) and Lemma 3.1 we have

$$
D^{\prime}=\sum_{x \neq 0} \lambda_{x} \operatorname{ad}\left(e_{x}\right)
$$

for some $\lambda_{x} \in F$. Let $B \subset A$ consist of all $x \neq 0$ such that $\lambda_{x} \neq 0$.
Choose $a_{1}, \ldots, a_{n} \in A$ such that their images under η form a basis of $\langle\eta(A)\rangle$ over F. Let B_{i} consist of all $x \in B$ such that $\varphi\left(x, a_{i}\right) \neq 0$. Since $c\left(x, a_{i}\right)=\lambda_{x} \varphi\left(x, a_{i}\right)$, the finiteness condition (F) implies that B_{i} is a finite set.

Assume that there exists an $x \in B$ such that $x \notin B_{i}$ for all $i=1, \ldots, n$. Thus, $\varphi\left(x, a_{i}\right)=0$ for all i 's. For arbitrary $y \in A$ there exist $t_{1}, \ldots, t_{n} \in F$ such that

$$
\eta(y)=t_{1} \eta\left(a_{1}\right)+\cdots+t_{n} \eta\left(a_{n}\right)
$$

It follows that

$$
\varphi(y, x)=\sum_{i=1}^{n} t_{i} \eta\left(a_{i}\right)(x)=\sum_{i=1}^{n} t_{i} \varphi\left(a_{i}, x\right)=0
$$

for all $y \in A$. As φ is non-degenerate, we conclude that $x=0$. As $x \in B$, we have a contradiction.

Hence, we have shown that B is the union of the B_{i} 's, and so B is a finite set. Consequently, D^{\prime} is an inner derivation.

Proposition 3.4. Suppose that $\operatorname{rank}(A)<\infty$. If D is a locally finite derivation of \mathscr{L}, then there exists $\mu \in \operatorname{Hom}(A, F)$ such that $D\left(e_{x}\right)=\mu(x) e_{x}$ for all x.

Proof. By (3.3) and Lemma 3.1, we have

$$
D=D_{0}+\sum_{x \neq 0} \lambda_{x} \operatorname{ad}\left(e_{x}\right)
$$

for some scalars $\lambda_{x} \in F$. By Lemma 3.3, the set $B=\left\{x \in A \backslash\{0\}: \lambda_{x} \neq 0\right\}$ is finite. Assume that B is not empty. We can choose a total ordering " \geq " on A, compatible
with its group structure, and such that the maximal element u of B is >0. Choose $z \in A$ such that $\varphi(u, z) \neq 0$. By induction on $k \geq 1$, it is easy to show that

$$
D^{k}\left(e_{z}\right)=\lambda_{u}^{k} \varphi(u, z)^{k} e_{z+k u}+v_{k},
$$

where v_{k} is a linear combination of e_{x} 's with $x<z+k u$. It follows that D is not locally finite.

Hence, if D is locally finite, then $B=\emptyset$ and so $D=D_{0}$. It remains to apply Lemma 3.2.

We do not know whether or not the restriction on the rank of A can be removed from the above proposition.

Corollary 3.5. A simple Lie algebra $\mathscr{L}(A, \varphi)$ (with no restriction on the rank of A) is not isomorphic to any generalized Block algebra or simple generalized Witt algebra.

Proof. It follows from the proof of Proposition 3.4 that $\mathscr{L}(A, \varphi)$ has no ad-semisimple elements except 0 . On the other hand, all generalized Block algebras and simple generalized Witt algebras have non-trivial tori.

4. The isomorphism theorem

We shall determine all isomorphisms

$$
\begin{equation*}
\theta: \mathscr{L}(A, \varphi) \rightarrow \mathscr{L}(B, \psi) \tag{4.1}
\end{equation*}
$$

between two simple algebras $\mathscr{L}(A, \varphi)$ and $\mathscr{L}(B, \psi)$, assuming that A and B have finite ranks. Clearly, θ extends to an isomorphism, again denoted by θ, of the Lie algebras $L(A, \varphi)$ and $L(B, \psi)$ by defining $\theta\left(e_{0}\right)=e_{0}$.

Theorem 4.1. The Lie algebra isomorphisms (4.1) are precisely the linear maps θ such that

$$
\begin{equation*}
\theta\left(e_{x}\right)=a \chi(x) e_{\sigma(x)}, \quad \forall x \in A \backslash\{0\} \tag{4.2}
\end{equation*}
$$

where $\chi \in \operatorname{Hom}\left(A, F^{*}\right), \sigma: A \rightarrow B$ is an isomorphism, and the constant $a \in F^{*}$ satisfies

$$
\begin{equation*}
\varphi(x, y)=a \psi(\sigma(x), \sigma(y)), \quad \forall x, y \in A \tag{4.3}
\end{equation*}
$$

Proof. Assume that the map (4.1) is an isomorphism of Lie algebras. For every $\mu \in \operatorname{Hom}(A, F)$, the linear map $D_{\mu}: \mathscr{L}(A, \varphi) \rightarrow \mathscr{L}(A, \varphi)$ defined by

$$
D_{\mu}\left(e_{x}\right)=\mu(x) e_{x}, \quad x \in A \backslash\{0\}
$$

is a derivation of degree 0 (with respect to the A-gradation of $\mathscr{L}(A, \varphi)$).
By Proposition 3.1 we know that the derivations D_{μ} are exactly the locally finite derivations of $\mathscr{L}(A, \varphi)$. Furthermore, the vectors $e_{x}, x \in A$, are the only common
eigenvectors (up to scalar multiple) of all D_{μ} 's. Analogous statements are of course valid for $\mathscr{L}(B, \psi)$. Consequently, there is a bijection $\sigma: A \rightarrow B$ such that

$$
\theta\left(e_{x}\right)=c_{x} e_{\sigma(x)}, \quad x \in A
$$

for some scalars $c_{x} \in F^{*}$. Clearly, $\sigma(0)=0$.
By applying θ to (1.1) we obtain

$$
\begin{equation*}
c_{x+y} \varphi(x, y) e_{\sigma(x+y)}=c_{x} c_{y} \psi(\sigma(x), \sigma(y)) e_{\sigma(x)+\sigma(y)} \tag{4.4}
\end{equation*}
$$

If $\varphi(x, y) \neq 0$, we derive that

$$
\begin{equation*}
\sigma(x+y)=\sigma(x)+\sigma(y) \tag{4.5}
\end{equation*}
$$

Let $x \neq 0$ and choose $y \in A$ such that $\varphi(x, y) \neq 0$. By (4.5) we have

$$
\sigma(y)=\sigma(x)+\sigma(y-x)=\sigma(x)+\sigma(y)+\sigma(-x)
$$

Consequently, (4.5) also holds for $y=-x$.
Obviously, (4.5) holds if $x=0$ or $y=0$. Assume now that $x \neq 0, y \neq 0$, while $\varphi(x, y)=0$. We choose $z \in A$ such that the numbers $\varphi(x, z), \varphi(y, z)$, and $\varphi(x+y, z)$ are all nonzero. Then we can apply (4.5) to each of the pairs $(x-z, y+z),(x,-z)$, and (y, z). So, we obtain that

$$
\sigma(x+y)=\sigma(x-z)+\sigma(y+z)=\sigma(x)+\sigma(-z)+\sigma(y)+\sigma(z)
$$

As $\sigma(z)+\sigma(-z)=0$, we infer that (4.5) holds also for the pair (x, y).
Hence we have shown that $\sigma: A \rightarrow B$ is a homomorphism, and consequently an isomorphism.

Eq. (4.4) now implies that

$$
\begin{equation*}
\epsilon_{x+y} \varphi(x, y)=\epsilon_{x} c_{y} \psi(\sigma(x), \sigma(y)) \tag{4.6}
\end{equation*}
$$

holds for all $x, y \in A$.
We claim that the ratio

$$
\begin{equation*}
\lambda=\frac{\psi(\sigma(x), \sigma(y))}{\varphi(x, y)} \tag{4.7}
\end{equation*}
$$

is independent of x and y. Of course, we have to assume that $\varphi(x, y) \neq 0$, and so, by (4.6), also $\psi(\sigma(x), \sigma(y)) \neq 0$.

By replacing x with $2 x$ in (4.6) we obtain that

$$
c_{2 x+y} \varphi(x, y)=c_{2 x} c_{y} \psi(\sigma(x), \sigma(y))
$$

By replacing y with $x+y$ in (4.6), we obtain that

$$
c_{2 x+y} \varphi(x, y)^{2}=c_{x}^{2} c_{y} \psi(\sigma(x), \sigma(y))^{2}
$$

The above two equations imply that $\lambda=c_{2 x} c_{x}^{-2}$. Since the expression (4.7) is symmetric in x and y, we also have $\lambda=c_{2 y} c_{y}^{-2}$. Hence, we have shown that

$$
\begin{equation*}
c_{2 x} c_{x}^{-2}=c_{2 y} c_{y}^{-2} \tag{4.8}
\end{equation*}
$$

if $\varphi(x, y) \neq 0$. The restriction $\varphi(x, y) \neq 0$ can easily be removed, i.e., (4.8) holds for all nonzero x and y. In particular, our claim is proved.

If $a=\lambda^{-1}$, then (4.6) shows that

$$
\begin{equation*}
a \cdot c_{x+y}=c_{x} c_{y} \tag{4.9}
\end{equation*}
$$

holds whenever $\varphi(x, y) \neq 0$.
Suppose that $x, y, x+y \neq 0$ while $\varphi(x, y)=0$. Choose $z \in A$ such that the numbers $\varphi(x, z), \varphi(y, z)$, and $\varphi(x-y, z)$ are all nonzero. We can apply (4.9) to each of the pairs $(x+z,-z),(x, z),(y,-z)$, and $(x+z, x-z)$.

Hence, we have

$$
a^{2} c_{x}=a c_{x+z} c_{-z}=c_{x} c_{z} c_{-z}
$$

and

$$
a^{3} c_{x+y}=a^{2} c_{x+z} c_{y-z}=c_{x} c_{z} c_{y} c_{-z}
$$

Consequently, (4.9) holds whenever $x, y, x+y \neq 0$.
If we define $\chi: A \rightarrow F^{*}$ by $\chi(0)=1$ and $\chi(x)=\lambda c_{x}$ for $x \neq 0$, then (4.9) implies that χ is a homomorphism. Furthermore, (4.2) and (4.3) hold.

The converse is straightforward.
We now apply Theorem 4.1 to obtain a description of the automorphism group of $\mathscr{L}=\mathscr{L}(A, \varphi)$, assuming that A has finite rank. Every character $\chi \in \operatorname{Hom}\left(A, F^{*}\right)=X(A)$ determines an automorphism θ_{χ} of \mathscr{L} by

$$
\theta_{\chi}\left(e_{x}\right)=\chi(x) e_{x}, \quad x \neq 0
$$

The map $\chi \mapsto \theta_{\chi}$ is an injective homomorphism $X(A) \rightarrow \operatorname{Aut}(\mathscr{L})$ and we shall identify the character group $X(A)$ of A with its image in $\operatorname{Aut}(\mathscr{L})$.

Let $\mathscr{A}=\mathscr{A}(\mathscr{L})$ be the subgroup of $\operatorname{Aut}(A)$ consisting of all automorphisms σ of A for which there is a constant $a_{\sigma} \in F^{*}$ such that

$$
\begin{equation*}
\varphi(\sigma(x), \sigma(y))=a_{\sigma} \varphi(x, y), \quad \forall x, y \in A . \tag{4.10}
\end{equation*}
$$

Clearly, such constant a_{σ} is unique.
Each $\sigma \in \mathscr{A}$ determines an automorphism θ_{σ} of \mathscr{L} by

$$
\theta_{\sigma}\left(e_{x}\right)=a_{\sigma}^{-1} e_{\sigma(x)}, \quad x \neq 0
$$

The homomorphism sending $\sigma \mapsto \theta_{\sigma}$ is injective and we identify \mathscr{A} with its image in $\operatorname{Aut}(\mathscr{L})$.

The following corollary follows immediately from Theorem 4.1.
Corollary 4.2. If $\mathscr{L}=\mathscr{L}(A, \varphi)$ is simple and $\operatorname{rank}(A)<\infty$, then

$$
\operatorname{Aut}(\mathscr{L})=X(A) \rtimes \mathscr{A}(\mathscr{L})
$$

(semidirect product, with $X(A)$ normal in $\operatorname{Aut}(\mathscr{L})$).

Example 2. Let $A=\mathbf{Z}^{2}$ and let $e_{1}=(1,0)$ and $e_{2}=(0,1)$ be the standard basis vectors. A bi-additive skew-symmetric map $\varphi: A \times A \rightarrow F$ is uniquely determined by the scalar $\alpha=\varphi\left(e_{1}, e_{2}\right) \in F$. We shall write φ_{α} for this φ. Clearly, φ_{α} is nondegenerate if and only if $\alpha \neq 0$. We set

$$
\mathscr{L}_{x}:=\mathscr{L}\left(\mathbf{Z}^{2}, \varphi_{x}\right), \quad \alpha \neq 0 .
$$

If $\alpha \beta \neq 0$, then the linear map $\theta: \mathscr{L}_{\alpha} \rightarrow \mathscr{L}_{\beta}$ defined by $\theta\left(e_{x}\right)=\alpha \beta^{-1} e_{x}, x \in \mathbf{Z}^{2} \backslash\{0\}$ is an isomorphism of Lie algebras. Hence, in the case $A=\mathbf{Z}^{2}$, there is only one (up to isomorphism) simple Lie algebra $\mathscr{L}\left(\mathbf{Z}^{2}, \varphi\right)$.

Assume now that $\varphi=\varphi_{1}$, i.e., $\varphi\left(e_{1}, e_{2}\right)=1$. We claim that $\mathscr{A}(\mathscr{L})=\mathrm{GL}_{2}(\mathbf{Z})$ holds in this case. A simple computation shows that if

$$
\sigma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Z}), \quad J=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

then $\sigma^{\prime} J \sigma=\operatorname{det}(\sigma) J$, where σ^{\prime} is the transpose of σ. Hence, (4.10) holds with $a_{\sigma}=$ $\operatorname{det}(\sigma)= \pm 1$. This proves our claim.

Consequently, $\operatorname{Aut}(\mathscr{L}) \simeq X\left(\mathbf{Z}^{2}\right) \rtimes \mathrm{GL}_{2}(\mathbf{Z})$.

5. Computation of $H^{2}(\mathscr{L}, F)$

In this section we compute the second cohomology group $H^{2}(\mathscr{L}, F)$ of the simple Lie algebra $\mathscr{L}=\mathscr{L}(A, \varphi)$.

Let $\psi: \mathscr{L} \times \mathscr{L} \rightarrow F$ be an arbitrary 2-cocycle, i.e., a skew-symmetric bilinear form satisfying the identity

$$
\begin{equation*}
\psi([u, v], w) \mid \psi([v, w], u)+\psi([w, u], v)=0 . \tag{5.1}
\end{equation*}
$$

We set

$$
\begin{equation*}
\lambda(x, y)=\psi\left(e_{x}, e_{y}\right) \tag{5.2}
\end{equation*}
$$

for $x, y \neq 0$. By setting $u=e_{x}, v=e_{y}, w=e_{z}$ in (5.1), we obtain that

$$
\begin{equation*}
\varphi(x, y) \lambda(x+y, z)+\varphi(y, z) \lambda(y+z, x)+\varphi(z, x) \lambda(z+x, y)=0 \tag{5.3}
\end{equation*}
$$

holds for $x, y, z \neq 0$. If $x+y=0$, then $\lambda(x+y, z)$ is not defined. In that case $\varphi(x, y)=0$ and the first term in (5.3) should be interpreted as 0 . Similar interpretations should be used for the second and third terms if $y+z=0$ and $z+x=0$, respectively.

Since ψ is skew-symmetric, it follows from (5.2) that

$$
\begin{equation*}
\lambda(x, y)+\lambda(y, x)=\mathbf{0} . \tag{5.4}
\end{equation*}
$$

For $u \in A$ define $\lambda_{u}(x)=\lambda(x, u-x)$ for $x \neq 0, u$. From (5.4) we deduce that

$$
\begin{equation*}
\lambda_{u}(u-x)=-\lambda_{u}(x), \quad x \neq 0, u . \tag{5.5}
\end{equation*}
$$

By setting $z=u-x-y$ in (5.3), we obtain that

$$
\begin{equation*}
\varphi(x, y)\left[\lambda_{u}(x+y)-\lambda_{u}(x)-\lambda_{u}(y)\right]-\varphi(y, u) \lambda_{u}(x)-\varphi(u, x) \lambda_{u}(y)=0 \tag{5.6}
\end{equation*}
$$

holds for $x, y \neq 0$ and $x+y \neq u$.
Assume that $u \neq 0$. By setting $y=2 x$ in (5.6), we obtain that

$$
\begin{equation*}
\lambda_{u}(2 x)=2 \lambda_{u}(x) \tag{5.7}
\end{equation*}
$$

holds if $\varphi(u, x) \neq 0$.
If $\varphi(u, x), \varphi(u, y)$, and $\varphi(u, x+y)$ are all nonzero, then by replacing x and y in (5.6) with $2 x$ and $2 y$, respectively, and by using (5.7), we obtain that

$$
\begin{equation*}
\varphi(x, y)\left[\lambda_{u}(x+y)-\lambda_{u}(x)-\lambda_{u}(y)\right]=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(u, x) \lambda_{u}(y)=\varphi(u, y) \lambda_{u}(x) \tag{5.9}
\end{equation*}
$$

If $\varphi(u, x), \varphi(u, y) \neq 0$ and $\varphi(u, x+y)=0$ then $\varphi(u, x+2 y) \neq 0$ and so (5.9) is valid if we replace y with $2 y$. By invoking (5.7), we conclude that (5.9) is valid as written.

It follows from (5.9) that the ratio

$$
a_{u}=\frac{\lambda_{u}(x)}{\varphi(u, x)}
$$

is independent of x, provided that $\varphi(u, x) \neq 0$. In other words, there is a constant $a_{u} \in F$ such that

$$
\begin{equation*}
\lambda_{u}(x)=a_{u} \varphi(u, x) \tag{5.10}
\end{equation*}
$$

holds whenever $\varphi(u, x) \neq 0$.
Let $x \neq 0, u$ and $\varphi(u, x)=0$. Choose $y \in A$ such that $\varphi(x, y)$ and $\varphi(u, y)$ are both nonzero. By replacing x in (5.8) with $x-y$, we infer that

$$
\lambda_{u}(x)=\lambda_{u}(x-y)+\lambda_{u}(y)=a_{u}[\varphi(u, x-y)+\varphi(u, y)]=0 .
$$

Hence, (5.10) is valid for all $x \neq 0, u$.
Let $l: \mathscr{L} \rightarrow F$ be the linear function defined by $l\left(e_{x}\right)=a_{x}$ for $x \neq 0$. Let $\tilde{\psi}$ be the 2-cocycle defined by

$$
\tilde{\psi}(u, v)=\psi(u, v)+l([u, v])
$$

If $x, y, x+y \neq 0$, then we have

$$
\tilde{\psi}\left(e_{x}, e_{y}\right)=\lambda(x, y)+\varphi(x, y) a_{x+y}=\lambda_{x+y}(x)-a_{x+y} \varphi(x+y, x)=0
$$

Hence, by replacing ψ with the cohomologous 2-cocycle $\tilde{\psi}$, we may assume that $\lambda_{u}=0$ for all $u \neq 0$.

It remains to determine λ_{0}. For $u=0$, (5.6) becomes

$$
\varphi(x, y) \cdot\left[\lambda_{0}(x+y)-\lambda_{0}(x)-\lambda_{0}(y)\right]=0 .
$$

Hence,

$$
\begin{equation*}
\lambda_{0}(x+y)=\lambda_{0}(x)+\lambda_{0}(y) \tag{5.11}
\end{equation*}
$$

holds if $\varphi(x, y) \neq 0$.
Now assume that $x, y, x+y \neq 0$ while $\varphi(x, y)=0$. We choose $z \in A$ such that the numbers $\varphi(x, z), \varphi(y, z)$, and $\varphi(x+y, z)$ are all nonzero. Then we have

$$
\begin{aligned}
\lambda_{0}(x+y) & =\lambda_{0}(x+z)+\lambda_{0}(y-z) \\
& =\lambda_{0}(x)+\lambda_{0}(y)+\lambda_{0}(z)+\lambda_{0}(-z)
\end{aligned}
$$

and

$$
\lambda_{0}(x)=\lambda_{0}(x+z)+\lambda_{0}(-z)=\lambda_{0}(x)+\lambda_{0}(z)+\lambda_{0}(-z) .
$$

Consequently, (5.11) holds whenever $x, y, x+y \neq 0$.
Let $\mu: A \rightarrow F$ be defined by $\mu(x)=\lambda_{0}(x)$ if $x \neq 0$ and $\mu(0)=0$. It follows from (5.11) that $\mu \in \operatorname{Hom}(A, F)$.

Hence, we have proved the following result.
Theorem 5.1. For the simple Lie algebra $\mathscr{L}=\mathscr{L}(A, \varphi), H^{2}(\mathscr{L}, F)$ is spanned by the cohomology classes $\left[\psi_{\mu}\right]$ where $\mu \in \operatorname{Hom}(A, F)$ and the 2 -cocycle ψ_{μ} is defined by

$$
\psi_{\mu}\left(e_{x}, e_{y}\right)=\delta_{x+y, 0} \mu(x), \quad x, y \neq 0
$$

References

[1] A.A. Albert and M.S. Frank, Simple Lie algebras of characteristic p, Univ. Politec. Torino Rend. Sem. Mat. 14 (1954 55) 117139.
[2] R. Block, On torsion-free abelian groups and Lie algebras, Proc. Amer. Math. Soc. 9 (1958) 613-620.
[3] R. Block, New simple Lie algebras of prime characteristic, Trans. Amer. Math. Soc. 89 (1958) 421-449.
[4] D.Ž. Đoković and K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Block algebras, Algebra Colloq. 3 (1996) 245-272.
[5] D.Z.. Đoković and K. Zhao, Some simple subalgebras of generalized Block algebras, J. Algebra, to appear.
[6] D.Z.. Đoković and K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Witt algebras, Trans. Amer. Math. Soc., to appear.
[7] W.P. Kocpp, Simple homogeneous subalgebras of generalized Witt algebras of finite rank, Ph.D. Thesis, University of Wisconsin, Madison, 1995.

[^0]: * Corresponding author. E-mail: dragomir@herod.uwaterloo.ca. Supported in part by the NSERC Grant A-5285.
 ${ }^{1}$ Supported by Academia Sinica of People's Republic of China.

